X_{\phi} = (-r\sin(\phi)\sin(\theta),r\cos(\phi)\sin(\theta),0), \\ These formulae assume that the two systems have the same origin and same reference plane, measure the azimuth angle in the same senses from the same axis, and that the spherical angle is inclination from the cylindrical z axis. This will make more sense in a minute. ) We see that the latitude component has the $\color{blue}{\sin{\theta}}$ adjustment to it. {\displaystyle (r,\theta ,\varphi )} Stack Exchange network consists of 181 Q&A communities including Stack Overflow, the largest, most trusted online community for developers to learn, share their knowledge, and build their careers. Define to be the azimuthal angle in the -plane from the x -axis with (denoted when referred to as the longitude), Using the same arguments we used for polar coordinates in the plane, we will see that the differential of volume in spherical coordinates is not \(dV=dr\,d\theta\,d\phi\). For example a sphere that has the cartesian equation \(x^2+y^2+z^2=R^2\) has the very simple equation \(r = R\) in spherical coordinates. flux of $\langle x,y,z^2\rangle$ across unit sphere, Calculate the area of a pixel on a sphere, Derivation of $\frac{\cos(\theta)dA}{r^2} = d\omega$. The answers above are all too formal, to my mind. The first row is $\partial r/\partial x$, $\partial r/\partial y$, etc, the second the same but with $r$ replaced with $\theta$ and then the third row replaced with $\phi$. Equivalently, it is 90 degrees (.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}/2 radians) minus the inclination angle. The volume element is spherical coordinates is: \[\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}\psi^*(r,\theta,\phi)\psi(r,\theta,\phi) \, r^2 \sin\theta \, dr d\theta d\phi=\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}A^2e^{-2r/a_0}\,r^2\sin\theta\,dr d\theta d\phi=1 \nonumber\], \[\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}A^2e^{-2r/a_0}\,r^2\sin\theta\,dr d\theta d\phi=A^2\int\limits_{0}^{2\pi}d\phi\int\limits_{0}^{\pi}\sin\theta \;d\theta\int\limits_{0}^{\infty}e^{-2r/a_0}\,r^2\;dr \nonumber\]. It can be seen as the three-dimensional version of the polar coordinate system. $$I(S)=\int_B \rho\bigl({\bf x}(u,v)\bigr)\ {\rm d}\omega = \int_B \rho\bigl({\bf x}(u,v)\bigr)\ |{\bf x}_u(u,v)\times{\bf x}_v(u,v)|\ {\rm d}(u,v)\ ,$$ X_{\theta} = (r\cos(\phi)\cos(\theta),r\sin(\phi)\cos(\theta),-r\sin(\theta)) Understand the concept of area and volume elements in cartesian, polar and spherical coordinates. In the plane, any point \(P\) can be represented by two signed numbers, usually written as \((x,y)\), where the coordinate \(x\) is the distance perpendicular to the \(x\) axis, and the coordinate \(y\) is the distance perpendicular to the \(y\) axis (Figure \(\PageIndex{1}\), left). Case B: drop the sine adjustment for the latitude, In this case all integration rectangles will be regular undistorted rectangles. {\displaystyle (\rho ,\theta ,\varphi )} where \(a>0\) and \(n\) is a positive integer. $$. 1. ) Spherical coordinates are useful in analyzing systems that are symmetrical about a point. In this case, \(\psi^2(r,\theta,\phi)=A^2e^{-2r/a_0}\). Here is the picture. $r=\sqrt{x^2+y^2+z^2}$. The polar angle may be called colatitude, zenith angle, normal angle, or inclination angle. In cartesian coordinates the differential area element is simply \(dA=dx\;dy\) (Figure \(\PageIndex{1}\)), and the volume element is simply \(dV=dx\;dy\;dz\). In cartesian coordinates the differential area element is simply \(dA=dx\;dy\) (Figure \(\PageIndex{1}\)), and the volume element is simply \(dV=dx\;dy\;dz\). Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions on a sphere or spheroid. where we do not need to adjust the latitude component. The difference between the phonemes /p/ and /b/ in Japanese. I know you can supposedly visualize a change of area on the surface of the sphere, but I'm not particularly good at doing that sadly. or As we saw in the case of the particle in the box (Section 5.4), the solution of the Schrdinger equation has an arbitrary multiplicative constant. 3. E & F \\ There are a number of celestial coordinate systems based on different fundamental planes and with different terms for the various coordinates. Area element of a surface[edit] A simple example of a volume element can be explored by considering a two-dimensional surface embedded in n-dimensional Euclidean space. If you preorder a special airline meal (e.g. In geography, the latitude is the elevation. We need to shrink the width (latitude component) of integration rectangles that lay away from the equator. ) Understand how to normalize orbitals expressed in spherical coordinates, and perform calculations involving triple integrals. $$dA=r^2d\Omega$$. "After the incident", I started to be more careful not to trip over things. Why are Suriname, Belize, and Guinea-Bissau classified as "Small Island Developing States"? A series of astronomical coordinate systems are used to measure the elevation angle from different fundamental planes. The volume of the shaded region is, \[\label{eq:dv} dV=r^2\sin\theta\,d\theta\,d\phi\,dr\]. The angular portions of the solutions to such equations take the form of spherical harmonics. 10: Plane Polar and Spherical Coordinates, Mathematical Methods in Chemistry (Levitus), { "10.01:_Coordinate_Systems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10.02:_Area_and_Volume_Elements" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10.03:_A_Refresher_on_Electronic_Quantum_Numbers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10.04:_A_Brief_Introduction_to_Probability" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10.05:_Problems" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Before_We_Begin" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Complex_Numbers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_First_Order_Ordinary_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Second_Order_Ordinary_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Power_Series_Solutions_of_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Fourier_Series" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Calculus_in_More_than_One_Variable" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Exact_and_Inexact_Differentials" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Plane_Polar_and_Spherical_Coordinates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Operators" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Partial_Differential_Equations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Determinants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Vectors" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Matrices" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_Formula_Sheets" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:no", "authorname:mlevitus", "differential volume element", "differential area element", "license:ccbyncsa", "licenseversion:40", "source@https://www.public.asu.edu/~mlevitus/chm240/book.pdf" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FMathematical_Methods_in_Chemistry_(Levitus)%2F10%253A_Plane_Polar_and_Spherical_Coordinates%2F10.02%253A_Area_and_Volume_Elements, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), 10.3: A Refresher on Electronic Quantum Numbers, source@https://www.public.asu.edu/~mlevitus/chm240/book.pdf, status page at https://status.libretexts.org. , To a first approximation, the geographic coordinate system uses elevation angle (latitude) in degrees north of the equator plane, in the range 90 90, instead of inclination. We know that the quantity \(|\psi|^2\) represents a probability density, and as such, needs to be normalized: \[\int\limits_{all\;space} |\psi|^2\;dA=1 \nonumber\]. How to use Slater Type Orbitals as a basis functions in matrix method correctly? Regardless of the orbital, and the coordinate system, the normalization condition states that: \[\int\limits_{all\;space} |\psi|^2\;dV=1 \nonumber\]. ( Moreover, A sphere that has the Cartesian equation x2 + y2 + z2 = c2 has the simple equation r = c in spherical coordinates. The same situation arises in three dimensions when we solve the Schrdinger equation to obtain the expressions that describe the possible states of the electron in the hydrogen atom (i.e. 1. Often, positions are represented by a vector, \(\vec{r}\), shown in red in Figure \(\PageIndex{1}\). $$ is equivalent to The small volume we want will be defined by , , and , as pictured in figure 15.6.1 . {\displaystyle (r,\theta ,\varphi )} for any r, , and . Latitude is either geocentric latitude, measured at the Earth's center and designated variously by , q, , c, g or geodetic latitude, measured by the observer's local vertical, and commonly designated . {\displaystyle (r,\theta ,\varphi )} ( The function \(\psi(x,y)=A e^{-a(x^2+y^2)}\) can be expressed in polar coordinates as: \(\psi(r,\theta)=A e^{-ar^2}\), \[\int\limits_{all\;space} |\psi|^2\;dA=\int\limits_{0}^{\infty}\int\limits_{0}^{2\pi} A^2 e^{-2ar^2}r\;d\theta dr=1 \nonumber\]. Now this is the general setup. Spherical coordinates, Finding the volume bounded by surface in spherical coordinates, Angular velocity in Fick Spherical coordinates, The surface temperature of the earth in spherical coordinates. The differential surface area elements can be derived by selecting a surface of constant coordinate {Fan in Cartesian coordinates for example} and then varying the other two coordinates to tIace out a small . The polar angle, which is 90 minus the latitude and ranges from 0 to 180, is called colatitude in geography. r Notice the difference between \(\vec{r}\), a vector, and \(r\), the distance to the origin (and therefore the modulus of the vector). The use of Because \(dr<<0\), we can neglect the term \((dr)^2\), and \(dA= r\; dr\;d\theta\) (see Figure \(10.2.3\)). The angle $\theta$ runs from the North pole to South pole in radians. From (a) and (b) it follows that an element of area on the unit sphere centered at the origin in 3-space is just dphi dz. Thus, we have The latitude component is its horizontal side. Mutually exclusive execution using std::atomic? \[\int\limits_{all\; space} |\psi|^2\;dV=\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}\psi^*(r,\theta,\phi)\psi(r,\theta,\phi)\,r^2\sin\theta\,dr d\theta d\phi=1 \nonumber\]. Linear Algebra - Linear transformation question. A bit of googling and I found this one for you! Therefore1, \(A=\sqrt{2a/\pi}\). The function \(\psi(x,y)=A e^{-a(x^2+y^2)}\) can be expressed in polar coordinates as: \(\psi(r,\theta)=A e^{-ar^2}\), \[\int\limits_{all\;space} |\psi|^2\;dA=\int\limits_{0}^{\infty}\int\limits_{0}^{2\pi} A^2 e^{-2ar^2}r\;d\theta dr=1 \nonumber\]. While in cartesian coordinates \(x\), \(y\) (and \(z\) in three-dimensions) can take values from \(-\infty\) to \(\infty\), in polar coordinates \(r\) is a positive value (consistent with a distance), and \(\theta\) can take values in the range \([0,2\pi]\). We already introduced the Schrdinger equation, and even solved it for a simple system in Section 5.4. 167-168). ) , x >= 0. If you are given a "surface density ${\bf x}\mapsto \rho({\bf x})$ $\ ({\bf x}\in S)$ then the integral $I(S)$ of this density over $S$ is then given by . $$\int_{-1 \leq z \leq 1, 0 \leq \phi \leq 2\pi} f(\phi,z) d\phi dz$$. We already performed double and triple integrals in cartesian coordinates, and used the area and volume elements without paying any special attention. It can also be extended to higher-dimensional spaces and is then referred to as a hyperspherical coordinate system. In this homework problem, you'll derive each ofthe differential surface area and volume elements in cylindrical and spherical coordinates. Is it possible to rotate a window 90 degrees if it has the same length and width? ( $$ In cartesian coordinates, the differential volume element is simply \(dV= dx\,dy\,dz\), regardless of the values of \(x, y\) and \(z\). Is the God of a monotheism necessarily omnipotent? Assume that f is a scalar, vector, or tensor field defined on a surface S.To find an explicit formula for the surface integral of f over S, we need to parameterize S by defining a system of curvilinear coordinates on S, like the latitude and longitude on a sphere.Let such a parameterization be r(s, t), where (s, t) varies in some region T in the plane. In lieu of x and y, the cylindrical system uses , the distance measured from the closest point on the z axis, and , the angle measured in a plane of constant z, beginning at the + x axis ( = 0) with increasing toward the + y direction. $$ It is also convenient, in many contexts, to allow negative radial distances, with the convention that the orbitals of the atom). {\displaystyle m} r Conversely, the Cartesian coordinates may be retrieved from the spherical coordinates (radius r, inclination , azimuth ), where r [0, ), [0, ], [0, 2), by, Cylindrical coordinates (axial radius , azimuth , elevation z) may be converted into spherical coordinates (central radius r, inclination , azimuth ), by the formulas, Conversely, the spherical coordinates may be converted into cylindrical coordinates by the formulae. $$ As we saw in the case of the particle in the box (Section 5.4), the solution of the Schrdinger equation has an arbitrary multiplicative constant. In spherical polar coordinates, the element of volume for a body that is symmetrical about the polar axis is, Whilst its element of surface area is, Although the homework statement continues, my question is actually about how the expression for dS given in the problem statement was arrived at in the first place. dA = \sqrt{r^4 \sin^2(\theta)}d\theta d\phi = r^2\sin(\theta) d\theta d\phi The spherical coordinates of a point in the ISO convention (i.e. In cartesian coordinates, the differential volume element is simply \(dV= dx\,dy\,dz\), regardless of the values of \(x, y\) and \(z\). atoms). Planetary coordinate systems use formulations analogous to the geographic coordinate system. }{(2/a_0)^3}=\dfrac{2}{8/a_0^3}=\dfrac{a_0^3}{4} \nonumber\], \[A^2\int\limits_{0}^{2\pi}d\phi\int\limits_{0}^{\pi}\sin\theta \;d\theta\int\limits_{0}^{\infty}e^{-2r/a_0}\,r^2\;dr=A^2\times2\pi\times2\times \dfrac{a_0^3}{4}=1 \nonumber\], \[A^2\times \pi \times a_0^3=1\rightarrow A=\dfrac{1}{\sqrt{\pi a_0^3}} \nonumber\], \[\displaystyle{\color{Maroon}\dfrac{1}{\sqrt{\pi a_0^3}}e^{-r/a_0}} \nonumber\]. \[\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}\psi^*(r,\theta,\phi)\psi(r,\theta,\phi) \, r^2 \sin\theta \, dr d\theta d\phi=\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}A^2e^{-2r/a_0}\,r^2\sin\theta\,dr d\theta d\phi=1 \nonumber\], \[\int\limits_{0}^{2\pi}\int\limits_{0}^{\pi}\int\limits_{0}^{\infty}A^2e^{-2r/a_0}\,r^2\sin\theta\,dr d\theta d\phi=A^2\int\limits_{0}^{2\pi}d\phi\int\limits_{0}^{\pi}\sin\theta \;d\theta\int\limits_{0}^{\infty}e^{-2r/a_0}\,r^2\;dr \nonumber\]. Instead of the radial distance, geographers commonly use altitude above or below some reference surface (vertical datum), which may be the mean sea level. Then the integral of a function f(phi,z) over the spherical surface is just In each infinitesimal rectangle the longitude component is its vertical side. In this system, the sphere is taken as a unit sphere, so the radius is unity and can generally be ignored. the spherical coordinates. ) To make the coordinates unique, one can use the convention that in these cases the arbitrary coordinates are zero. Theoretically Correct vs Practical Notation. m The spherical coordinates of the origin, O, are (0, 0, 0). 6. This gives the transformation from the spherical to the cartesian, the other way around is given by its inverse. Apply the Shell theorem (part a) to treat the sphere as a point particle located at the origin & find the electric field due to this point particle. The spherical coordinates of a point P are then defined as follows: The sign of the azimuth is determined by choosing what is a positive sense of turning about the zenith. vegan) just to try it, does this inconvenience the caterers and staff? , Do new devs get fired if they can't solve a certain bug? That is, where $\theta$ and radius $r$ map out the zero longitude (part of a circle of a plane). This is the standard convention for geographic longitude. Total area will be $$r \, \pi \times r \, 2\pi = 2 \pi^2 \, r^2$$, Like this + { "32.01:_Complex_Numbers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.02:_Probability_and_Statistics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.03:_Vectors" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.04:_Spherical_Coordinates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.05:_Determinants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.06:_Matrices" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.07:_Numerical_Methods" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.08:_Partial_Differentiation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.09:_Series_and_Limits" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.10:_Fourier_Analysis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32.11:_The_Binomial_Distribution_and_Stirling\'s_Appromixation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_The_Dawn_of_the_Quantum_Theory" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_The_Classical_Wave_Equation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_The_Schrodinger_Equation_and_a_Particle_in_a_Box" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Postulates_and_Principles_of_Quantum_Mechanics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_The_Harmonic_Oscillator_and_the_Rigid_Rotor" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_The_Hydrogen_Atom" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Approximation_Methods" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Multielectron_Atoms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Chemical_Bonding_in_Diatomic_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Bonding_in_Polyatomic_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11:_Computational_Quantum_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Group_Theory_-_The_Exploitation_of_Symmetry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13:_Molecular_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_Nuclear_Magnetic_Resonance_Spectroscopy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15:_Lasers_Laser_Spectroscopy_and_Photochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16:_The_Properties_of_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17:_Boltzmann_Factor_and_Partition_Functions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18:_Partition_Functions_and_Ideal_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19:_The_First_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20:_Entropy_and_The_Second_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21:_Entropy_and_the_Third_Law_of_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22:_Helmholtz_and_Gibbs_Energies" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23:_Phase_Equilibria" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24:_Solutions_I_-_Volatile_Solutes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25:_Solutions_II_-_Nonvolatile_Solutes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Chemical_Equilibrium" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "27:_The_Kinetic_Theory_of_Gases" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "28:_Chemical_Kinetics_I_-_Rate_Laws" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "29:_Chemical_Kinetics_II-_Reaction_Mechanisms" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "30:_Gas-Phase_Reaction_Dynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "31:_Solids_and_Surface_Chemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "32:_Math_Chapters" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Appendices : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "showtoc:no", "license:ccbyncsa", "Spherical Coordinates", "autonumheader:yes2", "licenseversion:40" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FBookshelves%2FPhysical_and_Theoretical_Chemistry_Textbook_Maps%2FPhysical_Chemistry_(LibreTexts)%2F32%253A_Math_Chapters%2F32.04%253A_Spherical_Coordinates, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), status page at https://status.libretexts.org.
Iowa Premier Softball,
Distance From Cornwall To London,
Jenny Lee Aurness,
Old Ged Score Conversion Chart,
A Thousand Times I Failed Bible Verse,
Articles A